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Abstract

Assumption of the uniform qra'vity field was Justified by
computing errors due to this assumption and establishing the
limits within which the simplified computations should be
performed. Vertical take-off and ascent was analyzed for
different values of a constant propellant flow. The analysis
of the vertical descent and landing was extended to the cases
of a constant propellant flow and thrust, to the modulated and
intermittent thrust. Typical numerical examples were computed
without embarking on a generalized optimization problem, but
indicating the ways of minimizing the propellant consumption.
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CHAPTER I

Physical Conditions

1.1 The Moon is not an exactly spherical body. It has an

equatorial bulge pointing towards the Earth, hence its shape can

be approximated as an tri-axial ellipsoid.

In the preseit rropnrt, hnwAver, the Moon is considered as

a spherical body of a radius R. There is no sea-level on the

Moon and lunar ground level gravity acceleration corresponds to

the level of large maria, like Mare Imbrium. The slow axial

rotation of the Moon allows to neglect the centrifugal effect on

the gravity. The following data have been accepted for

computations:

Earth's true equatorial gravity ge = 32.2284 ft/sec 2

Earth's standard gravity measured
at ) = 460 ge = 32.174 ft/sec2

The mass of the Moon Mm = 0.0123 Me

Lunar ground gravity acceleration go 0.164 ge'

Lunar ground gravity acceleration go 5.3 ft/sec2

Lunar mean radius R = 1080 stat. miles = 1740 km.

Sidereal period of axial rotation T = 27.32166 days

2w .2 rad -6 m

Angular velocity of rotation co L = 0.23 - 2.66 x 10-6 rad
T day sec

Tow velocity at the equator wR = 2.88 x 10-3 miles = 15.2 feet
sec. sec.
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Gravity constant goR2 • kM = 1.17 x 103 (miles) 3
Sec•

Square of ground circular velocity Vc2 :goR :1.084i 2

Lunar ground circular velocity Vc = 1.041 mi/sec = 5500 ft/sec.

Lunar ground escape velocity Ves = 1.472 mi/sec = 7770 ft/sec.
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CHAPTER II

Errors Due To Uniform Field Assumption

2.1 Assumption of a uniform gravity field for the final phase of

the lunar landing or for the initial phase of the take-off, can

be justified if we establish the volume within which the error

due to this assn!mpt!in is ncgligiblc. If rvc cxtcnd the simplifying

assumptions beyond this volume a method should be provided to find

easily the corrections for computed values of range, velocity etc.

Let us examine first the variation of the lunar gravity

acceleration in the vertical direction. As there is no sea-level

value for this acceleration, what we call a ground value go

may not have the same value on the lunar surface. In the present

paper these local divergencies are neglected and the ground levei

of g is assumed to be go = 5.3 ft/sec2 . Assuming sphericity of

Ahe Moon and concentric density distribution we express the gravity

variation with the altitude y over a hypothetical ground level.

g= go 1 + ( = go ) +R )X =

IR 1.2 R 1.2.3 R 1.2.3.4 R

Assume as a mean lunar radius R = 1080 stat. miles and find the

maximum relative error 2 in i.eplacing the variable g by a constant
go

value go up to the altitude y = 10o8 Sto miles = 579000 ft.
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A go g "

if we take I 1
R 100

--=-- 1 +-- + +,

go 100 2 x 102  104 2 x 106  j

= 2 ( 1-0.015 + 0,002 - 0.0000025 +.,, 2= . x 0.9852 = 0.0197
100 100

hence the error is slightly less than 2 percent of the initial

value. By accepting this error we should investigate the time and

altitude errors due to this approximation.

2.2 Now let us consider the errors in horizontal motion (range

error).

In the uniform gravity field we assume also that a planet has

an infinite radius, and hence its surface is an infinite plane

passing through the point selected as an origin. The sphericity of

the planet produces the inclination of local vertical with respect

to OY at the origin. The range is measured along the plane tangent

to the surface at 0, and the curvature of the surface may increase

It as shown on Figure 1. The point P where a landing may

theoretically occur is actually at an altitude Ay above the ground

level. For any arbitrary horizontal distance x let us compute

the angular (Ay) and altitude (Ay) errors.
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N

g0go •o

\ ox

Figure 1
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tan Ay = x

R

2= 2

(R + Ay)2 R2 + x

or 2 Ay + Ay2 x 2

R R2  R2

neglecting the higher powers of ( "z )we finally have

Ay x2

R 2R2

TABLE I

x 2 4 6 8 10 12 14 Stat.Mi.

X x 10 3  1.85 3.70 5.56 7.41 9.26 11.11 12.97

Ay 0006' 0013' 00199 0025* 0032. 0038' 00459

Ay N 106 1.71 6.85 15.45 27.45 42.87 61.72 84.11

R

Ay x 103 1.848 7.4 16.69 29.62 46.28 66.62 90.90 St.Mi.

Ay 9.8 39.1 88.1 156.5 244 352 480 Ft.

From the Figure 2 an approximate extension of the range due to

sphericity can be estimated ai Ax z Ay cot cc, where

C = 1800 - 'KF, c(F is the fall angle.
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Figure 2
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2.3 The errors in the estimation of time and velocity are computed

only for the case of a free vertical fall.

In a uniform gravity field

"Y = go

or d2 y di
"" "y " - - gO

dt', dy

The integration yields

i2= - go (Y Yo)

2

If the initial speed o = 0, and if y - 0 that is the fall

ends at ground level we obtain the impact velocity

•ii2 = 2 g oYo .

Consider now a free fall in a variable gravity field, obeying

inverse square law.

* dy _0_R2

dy (R + y)2

hence

2 g° R + y R + Yo (R + y)(R + yo)

If y = 0 and Yo = 0, we obtain

j2 = 2 g0R Yo
R÷+ yo

The difference between the vertical impact speed Y, of variable

field and that of the uniform one will be found from the equation
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i . v2  - (). ( ) = 2 goyo R[2 g OY-22

+ - Yo R + y0

Hence the error due to simplified assumption is of the order

_ _ _ _ 
_ __2 

goyg2

IR + y / 2 goyo +

yR + y° +

R + YoR I+ Y•

R

!- + 1! 1
R R

By using serial expansion the error function can be given

the following form

3 / 2 - 1 /2 Y 1 21/ 2]

-" 2 goR - I + 1 (-- )-

( R 4R
Yo /2" (Yo)3/

-go R yo 3/2•
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For the Moon 2oR = escape velocity from the ground level

= 7770 ft/sec.

The following table of impact velocity errors has been prepared

assuming a free fall from the altitude yo with the initial zero

velocity. The correct values of impact vertical velocity have

also been computed from the formula

Syoy/R

l + Y/R

and the relative error estimated

TABLE II

YO 2.7 5.4 8.1 10.8 16.2 21.6 St.Mi.

YO 14280 25560 42800 57100 85500 114000 Ft.

Yo .0025 .0050 .0075 .0100 .015 .02R

yo
1 - 1.00125 1.00250 1.00374 1.00499 1.00747 1.00995

R

""" 1.25 2.51 3.77 5.03 7.56 10.1 x 10-3

Yv

iv 386 548 670 774 945 1090 Ft/sec
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So the velocity error is usually less than one percent for

yo < 100,000 ft. If slide rule is used the difference Ay should

be estimated from the formula and not from the difference f - ;V"

In the latter case the subtraction of two almost equal numbers

greatly magnifies the error.

2.4 The time of free fall from the altitude yo in the uniform

gravity field is estimated from the formula

t = - - J 0.614
g V 2.65 1.628

in seconds if the initial zero vertical velocity is assumed, and

if yo is given in feet.

In the variable gravity field the time tv is estimated from

the Kepler's equation applied to a rectilinear ellipse, that is

with an eccentricity e approaching unity: e-,.1.0. An assumption

is made that in the vicinity of ground level the velocity Is less

than its escape value, then t and E are measured from the apofocus

of an elliptic orbit

n (tv - to E + e sin E,

where
n2- g°R2  ;and

a3

the semi-major axis a can be defined from the initial conditions

g R2
0

R 2
2 goR -- VoR + Y
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R + Y

and as V0  0, we obtain a 2 + Y that is the perifocus lies

at the Moon's center.

n2= 8 goR 2  2 R 2g 0

( +Yo ýR + Yo R=+y

3/2

Substitution of numerical values yields

2~(1 -\106 ) -3/2n +
(1080) (5280

2.727 x 10-3 ( 1 + + 0 )3/2 1
R _se-c

For e = 1 the ellipse is reduced to a straight line, the

eccentric anomaly E is computed from the Figure 4.--). P
Perifocus N Apofocusa

F igue 4

Figure 4
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At the ground level

R + yo R - yo
ON' = a - Y0 0o2 0

cos E - ON = R-Yo
a R+ yo

2 1 R -Yo2 2 V R

sin E = 1\ - cos 2 E = 1- ( 2
T R + Yo/ R + yo

1 + y VR

E = arc sin 2 "• Yo/R-

1 + Yo/R.

Substitute into the Kepler's equation, taking to = 0, and e = 19

tv = I E + e sin E)= 3.667 x 102 x (I + 11-3/2 (RE + sin E)

The error due to the uniform field assumption is given by

the difference.

At = ru - t s0.614 a 3.667 x 102 x (e1 + R ( E + sin E

The results are given in the Table III.
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2.5 Having established the limits of errors due to the

assumption of a uniform gravity field we may consider a cylindrical

box whose base is resting on the lunar surface. The initial point

of any trajectory lies on the vertical axis of symmetry of the

box; whose radius is 14 stat. miles ' 74000 ft., its height = 22

stat. miles = 114000 ft. If the initial and end point of a

trajectory lie within this box the errors due to simplifying

assumptions are limited by the following values:

Ay < 0045'

Ay < 480 feet (altitude of the impactfor horizontal range)

At < 2 x 10-2

t -

If a further sacrifice of accuracy is permitted by extending the

dimensions of the box, the following formulas enable us to

estimate the order of magnitude of the error.

Ay x 2

R 2 R2

Ax = (Ay) cot (1800 - cF)

_~ 
3/2\3/

A; 2 I )-- = 3885 •- ft/sec.

2 R- lR
A; =( !- V) 77T 0o

At = 3.667 x 102 x ( + 3- E + sin E - 0.614R
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where
sin E 2 y Y in feet and At in seconds

R

1-\- + 2 - -5 ..90 R2 R R 2 R

•/ • •Figure 5
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CHAPTER III

Powered Ascent

3.1 The total thrust of a rocket engine is given by the

expression

F = ~u + Ae (Pie - Po(3-1)

where is the mass flow of the propellant in slugs per sec

u the actual exhaust velocity in ft/sec measured

relative to the rocket at the exit

Ae = the exit area in ft 2

pe = the exit pressure in lb/ft 2 .

po = surrounding pressure

In the vacuum po = 0 and the thrust assumes a value

F = A u + Ae Pe (3-2)

which can be replaced by

F A Ueff.

where ueff is the effective exhaust velocity found from the equation

Ae Pe
u eff= + (3-3)

In further development the index eff. will be dropped and u will

always mean an effective velocity. Hence F = u.
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The expression for the specific thrust I of a rocket is

obtained from the equation:

F = u = I 1 g (3-4)
M .e

where:

F -- the total thrust of the rocket engine in pounds.

u -- the effective exhaust velocity at the nozzle's

exit in ft/sec. The term m u includes the exit

pressure term.

-- the mass flow of the propellant

fuel + oxydizer in slugs/sec.

I -- specific thrust in lb (Thrust) sec.
lb/sec (propellant)

w -- the propellant consumption in lb/sec.

hence

u I = I g (3-5)
m e

ge is a constant coefficient giving the ratio

between the specific thrust and exhaust velocity

(I = !L-) it is not affected by varying gravity

ge

field.

ge is not the true gravity acceleration but is the standard NACA

gravity acceleration corresponding to that measured on the

surface of the Earth at approximately X = 460 N, hence it

corresponds to the conditions at which rocket fuel weight is

measured on the Earth. Its value = ge = 32.174 ft/sec 2 .
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3.2 Consider now the vertical ascent of a rocket in airless

conditions. The forces acting at every instant on the remaining

mass M of the rocket are those of the thrust and weight, hence

M dV = F - Mg
dt

In this problem a constant g = go is assumed, provided the

altitude Is below an imposed value, the exhaust effective speed

u is also assumed to be constant, hence:

dV 0
M T = m u - Mgogdt

or

dV dM * dM
M dt -t oMgo0 as In

hence
dM

dV =- u - g dt
M 0

The integration yields:

V - Vo = u tn i- - g t = en - go t (3-6)

If Vo = 0, the equation assumes the form:

v= u tn M-° - g t. (3-7)
M 0

where tn is the natural loge = 2.3026 loglo , go has been

defined as the local ground gravity) Mo is the initial mass of

the rocket at time t = 0, M is the terminal mass of the rocket

at time t = t. The ratio of masses can be replaced by the ratio
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of weights whatever the gravity field is.

S= .0- •o (3-8)
M Mg W

Insofar no assumptions have been made as to the rate of the

propellant consumption, and so the equation (3-6) and (3-7) can be

applied to the cases of constant or variable fuel flow. Only

a constant u and consequently a constant I has been postulated.

If the rate of the fuel flow is constant and equal to

a fixed fraction of the initial mass, we write

S= K Mot and the mass M after t seconds since

the ignition becomes

M = Mo (1 - Kt), conversely W = Wo (1 - Kt)

3.3 Assume now that the rocket ejects a constant mass

m = K Mo per second, where Mo is the initial mass of the rocket.

Let M, be the mass of the empty rocket, hence Mo = M1 + fuel.

Show which conditions must be fulfilled:

a) that the rocket can rise at once after the ignition.

b) that it can rise at all.

If it can rise vertically at once find its maximum velocity

and maximum height, assuming a constant gravity acceleration go.

A rocket can rise at once if its thrust is greater than the

initial weight

F > Wo

or

K Mo u > Mo g0
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K u > go or I ge > Lo I I ge - Lo > 0

It can rise after some timel if its thrust is at least greater

than its empty weight

K Mo u > M1 go

K u > 
o

Assuming K u > go, we can compute the ascension from the moment

of ignition. From the previous sections, the vertical speed is

at any moment

V =V 0 - t + u tn M°

if Vo = 0 and M = Mo - K Mo t = MO (1 - Kt) ,

then
V = - go t - u tn (1 - Kt) = - go t - I ge 'n (l-Kt)

(3-9)

The acceleration at any time t of powered flight is

and the
second 2 2

dV K u derivative dV u
dt 0  + Kt of dt 21 dt V1 (1 - Kt)2

The mathematical extremum of velocity is attained when
dV

- = 0, the corresponding value of t is
dt

Ku
1 Ktm -

go

1 u
tm - - , this value corresponds, however,

K go
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to a minimum value of V, as the second derivative of V shows: this

is apparently contradictory to the fact that L is positive and
dt

increasing with t.

The paradox is explained by taking notice that tm is

1 u go -K unegative, because - - = < 0. So this minimum V lies

K go K go

in the past time before the ignition (and motion) started.

During the ascension, insofar K u > go the velocity and

acceleration (in the vacuum) are both increasing until the

exhaustion of fuel, hence the maximum value of the velocity will

be attained at a certain time tl, when Mo (0 - KtI) MI, therefore

M1
1 -Ktl = q .

0

and
I 1 1 W1

t= - (0 - - ) = - ( 1 - - ) .
K Mo K Wo

Hence

Vma - 0( - To) + u tn M2

Lo K 1 - Wl) + I ge i-n wO . (3-10)

The value of the acceleration at this moment also attains its

maximum value:
dV K Mo u(-) = o+ -

dt I 0  M1

K W

-- go + - I ge (3-11)
W1
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Hence (dV/dt) 1  W-------- = - 0.164 + K I (I)
ge Wl

Since this moment the positive term of the acceleration

vanishes and its value becomes

dV
dt- go

3.4 The computation of a trajectory consists of two parts:

powered flight and coasting. Assume the initial conditions

Yo = 0, Vo = 0.

In powered flight:

dy 1
V = - = got + u n1 ; assuming that the

take off was at the ground level, i.e., y = 0, we obtain the

altitude y at any time t after the ignition.

g0 t 2 21y=- + u ft tn (- ) dt9

2 0 u - Kt

ft (1 - Kt) dt = t (n - Kt) -Kt dt=
0 0)1 - Kt

-t 1
= t tn (1- Kt) - t + I dt =

0 1- Kt

It

= t Ln (1 - Kt) - t - 1 Ln (1 - Kt) =
K0

= (t - () - Kt) - t = - -t-Kt);

K K
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hence I

- got 2  I
h - - t 2 +( tn 1 - Kt) + t (3-12)Y= 2 * L KJ

Let the altitude at burn-out be yo; the value of yo can be found

by setting

t = t =- ( I -
I K Mo

1 - Kt _,i Mo

hence

= - g* ÷2 + u [t + In (1 - Kt1)Yo 2 K

1 2 (° l M1 2 •uI 1 MM nMI
go- - Io + - 0 - Mo) - ! _ n ! 0 (3-13)

Taking now the moment of burn-out inturn as t = 0, the velocity at

any time t after the burn-out is given by the expression

V = Vmax - got

The maximum height is attained at the time t 2 after the burn-out

t 2 = Vmax 1 0 1) U Mo
g o  K 1g ij ' (3-14)

The value of this height, beyond the burn-out point is
V2

max

A Y2 = - .2go

Substitute the value of Vmax*

A =2 1 U tn !0 n g- 0 (3-15)

2 2go I M1  K No

the total maximum height will be: yo + A Y2"
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Hence

Ymiax =- " 2" E (1 - ro + 1? (1 - )-

KM Lo N 1  0-M l

ma 2 L (! M1 n 2o
K Mo Ml

+ - ( -n M) +- (
2go M l Mo

!" 01 L ) t. Mo
K Mo M1

u2 Mo) 2  u M1  u M
(- n -) + 0 ( - -tn Z-2

2g0  Noi K M "

or,
1 2 2 W 2 +I ge o

gmax (n 0) +I - - -1n !- (3-16)

2 g0o W1 K L Wo W1 ]

3.5 As an example the ascent equations have been applied to

the computation of the take-off from the ground level for a lunar

excursion module (LEM) of weight 4 tons. All weights In this

problem are measured at the standard conditions on Earth.

Assume I = 300 sec, burning time tb~o = 40 sec, a

constant propellant flow W = c = 20 lb/sec;

i = I ge = (300)(32.174) = 9652 ft/sec.

c 1 1 Wo 8000 Wi 7200
Hence K go' = O - 1.111, W- 0 0.900.
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Burp-out conditions:

= v - ( - ) Ig n W =go t +
Yb.o max K Wo W o b.o.

+ I ge (2.306) log 0o jWo

- - (40)(5.3) + (300)(32.174)(2.3026) log (1.111)10

= - 212 + (9650)(2.3026)(0.04571) = - 212 + 1017

805 ft/sec.

Altitude Yb.o attained at burn-out:

Yb.o - t2 + I g - K - t) tn 10Yb o = - -e IK W1

(5.3) (1000) ]

=- (3 + (9650) 40 - (400 - 40) tn 1.111
2

-- 42404+ (9650) [ 40 - (360)(.1052)]

= - 4240 + (9650)(40 - 37.9) = - 4240 + 20260

= 16020 ft.

Maximum acceleration attained at burn-out

6*
y +K - I

ge e W1

-0.164 + 300 - 0.164 + (0.75)(1.111)
400 W1

- 0.670

y = (0.670)(32.174) = 21.55 ft/sec 2
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The time of coasting to the maximum altitude

Vma 806
At = = - = 152 sec.

go 5.3

total time of ascent t = t + At = 40 + 152 = 192 sec.
max b.o

extra height beyond the b.o.

Vmax 2  (805)2 648025
6y- - = 61100 ft.

2g 10.6 10.6

total max yb + Ay = 16020 + 61100 = 77120 ft.

This result is checked by using the equation (3-16) which now

assumes the form
2

Wo
Ymax = (8.78) x 106 (n W-) +

+ (3.86) x 106 (1 - -- ).
Wo Wl

Ymax 10.6 (.1052) + (9650)(400)(1 - 0.9-0.1052)

(9.312) x 107 x 1.1067

10.6 x 102

- (9.65) x (4) x 106 x (5.2) x 10-3

9.72 x 104 - 2.06 x 104 = 76600 ft.

The same pattern is applied to other values of •1 and

wl

the results are presented in the Table IV. All computations have

been performed with slide rule accuracy, this explains the small

discrepancy in the values of Ymax"
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CHAPTER IV

Vertical Descent and Landing Constant Thrust

4.1 The problem is not a simple reversal of the take-off problem,

but presents some different aspects.

Assume that at a certain altitude yo the horizontal velocity

of the vehicle has been killed, but it still possesses a vertical

velocity Yo' This velocity plus the velocity acquired in the free

fall from the altitude Yo must be reduced to zero at the altitude

just above the ground.

A particular case is when io = 0. It is shown in the next

Chapter that in order to minimize the propellant comsumption it

would be advisable to let the vehicle to drop freely for considerable

time, and then to apply one or few bursts of thrust. This, however,

implies a re-ignition of the engine and the safety considerations

require the avoiding of such procedure, as the failure of the

engine to ignite would be fatal, this consideration has precedence

over the fuel economy. Hence we examine first the descent under

continuous thrust, which may or may not be modulated.

Consider first the case of constant thrust and a constant

propellant flow W = K Woo Initial conditions are yo and Yo = Vo.

Final conditions are: yf = 0, j = 0. More properly yf is a small

altitude above the ground, at which the vehicle may hover, giving

to the pilot the opportunity to select another landing place if

necessary. At any time t since the beginning of the maneuver we

have
IKY = - go + (1)
1 - Kt



TR 63-2t Pg. 30

First and second integrations yield

=Vo "go t + I ge n1 Kt (2)
1 - Kt

2+ T ge- t - K t) tn +2+1 -(t

+ YO (3)

The substitution of final conditions into the equations (2) and

(3) yields two equations which theoretically can be solved to find

K and t, that is the rate of fuel consumption and the time of

descent.

Let In 1
1 - Kt

Vo - go t + I ge X = 0 • (4)

2  + g t - (- t)X] +

+ Yo= 0 (5)

Note that X > 0

From (4) X = - g- (6)
I ge

Substitute into (5)

Vo t - 0t + YO + I g et + (• 0 ~~ go t) =0

Solving (6) and (7) with respect to K (7)

9 0 t
2

1 2 - (I ge + Vo)t - Yo-=- t +
K

Vo - g0 t
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go t
S+ I ge t + Yo

1 2

K g0 t -V 0

K= 0  f(t) (8)

g t2

2 + I ge t + Yo

and from (6)
g t - V

0 0

1 I ge

1 - Kt

go t - Vo0

K = 1- e =e 4(t). (9)
tt-=

Plotting curves K = f(t) and K = *(t) their intersections yields

the values for t and K. The method is illustrated by considering

* vehicle descending from the altitudes yo = 5,000 ft, 10,000 ft,

20,000 and 40,000 ft, to the lunar surface. In all cases it has

been assumed Vo = - 400 ft/sec and I = 300 sec. The curves for

the solution of equation (7) have been computed in Tables V,

VI, VII and VIII, and the results presented on the Graph A, where

the solutions have been obtained,
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The Tables V9 VI, VII and VIII provide data for graphical

solutions of equations (4) and (5). For all altitudes one common

curve K = V(t) is plotted, which does not depend on yo. Then for

any value of Yo a curve K = f(t) shown by equation (8) is plotted.

The intersection of *(t) and f(t) yields the value of K and that

of tI - time of descent. Some obtained results have been checked

by substitution into the equations.

(1) t 134 All 98 sec.

(2) K 8.2 8.93 9.4 x 10-4

sec

(3) Kt 0.109 0.0992 0.0921

(4) 1 - Kt 0.891 0.9008 0.9079

(5) 1 1.1223 1.1101 1.1014
1 - Kt

i
(6) loglo 0.04999 .04532 .04198

1 Kt

(7) (2.3026)(6) 0.1151 0.1043 0.0967

(8) go t 710 588 520 ft/sec

(9) go t - Vo 1110 988 920 ft/sec

(91
(10) - 0.1150 0.1024 0.954

I ge

This table served to check the graphical solutions by substitution

into the equation(6)written as

tn 1 -g 0 t - V0
1-Kt I ge

7
Line (•) yields the values for the left side and the line (10) for

the right side of this equation.
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Check of the equation (5), written as:

t2 - Yo - Vot = I ge t - K

we obtain for the left side in the case yo = 10000 ft.

(5.3) (12321)

2 - - 10,000 + 400 x 111 =

= 32630 - 10,000 + 44400 = 67030 ft;

and for the right side:

1 l-Kt 1 ]I ge t 1- Kt n(1"K-K)

S [ ] -~

96520.891 x 104 (0.1043) ==11 - 8.93

= 9652 111 8.91 x 103 (0.1043) =

= 9652 (111 - 104.07) =

= (9652) (6.93) = 68200 ft.

The agreement is fairly good for the slide rule accuracy. The

results of the computations are summarized in the following table

and graph, where t is the time of descent from the initial

altitude yo to y = 01 Kt Wo- is the ratio of the propellant

consumed during the maneuver to the initial weight of the vehicle

at y = Yo. The magnitude of the initial and final accelerations

are computed from the equation
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• . WO

S= 0.164 + KI

ge l

where

W= Wo 0l - Kt) .

for t = 0 - 0.164 + KI = initial acceleration in terms of thefor t= O•ge

Earth standard gravity ge"

For each landing case thelfuel consumption and the thrust

are constant. This implies that whatever is the fuel flow, the

specific thrust I remains constant. The ratio of thrust to the
Fo

initial weight is F0  1 _ = KI. The weight here is the standard
Wo Wo

Earth weight of the vehicle.

The results obtained for descent from different altitudes are

summarized in the Table IX and presented graphically on the

Graph B.
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Note that the thrust Fo is compared to the initial weight of

the vehicle at the Earth's standard gravity. If the lunar initial

weight is considered, then

Fo Fo ge F0  1

(wo) e (wo)E go wo 0.164

We have investigated the case of a descent from different altitudes,

with the same initial vertical velocity. Consider now the case of

a vertical descent from the same altitude but with different

initial velocities Vo. For an example the altitude Yo = 10,000 ft

has been selected, and for Vo the downward values 0, -4009 -800,

-1000 ft/sec assumed. The equations (8) and (9) have been used for

plotting the curves K = f(t) and K = *(t); the coordinates for

these curves are computed in the Tables X, XI9 XII and V, the

curves are plotted on Graphs C and D, yielding graphical solutions.

The results are summarized on the Table XIII; then K, Kt, and

final acceleration Y- are plotted versus the initial velocity Vo
ge

on the Graph E, which shows that for each initial altitude there is

an initial Vo yielding a minimum propellant consumption

Kt = fropellant weight In the considered example this minimum
initial weight

occurs for yo = 10,000 ft, Vo = - 570 ft/sec.
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CHAPTER V

Intermittent and Modulated Thrust

5.1 Assume that the horizontal velocity of the vehicle has been

killed at the altitude yo. Its vertical velocity is y = V., which

may be zero in particular cases. In the previous chapter a

vertical descent under a constant continuous thrust has been

considered, without the stalling and restarting the engine. Assume

now that the engine has been switched off, the vehicle in free fall

will reach the altitude

got 2

Yl = Yo + Vo t g

2

with a vertical velocity V1 = Vo - go t. At this altitude the

engine will be again ignited, then the rate of the propellant flow

will be computed as It has been shown in the Chapter IV in order

to reach the ground with zero velocity.

Without embarking on a generalized optimization problem let

us compare two methods of descent from the point of view of

propellant economy. Consider a descent from the altitudes

Yo = 20,000 ft and yo = 40,000 ft, assuming the initial vertical

Vo = - 400 ft/sec for both cases. Assume that the ignition occurs

when the vehicle reaches the altitude yl = 10,000 ft. Graph on

Figure E enables us to find K and fuel consumption

wo - W1
- W= Kt required to reach the ground.
Wo
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Powered descent from 20,000 ft: (as given in the Table IX)

Propellant consumption Kt = 0.109 of the initial weight

Time of descent t = 134 sec.

Maximum acceleration = .112 ge

Drop from yo = 20,000 ft to Y= 10,000 ft., time of the fall is

computed from the equation

go t

Ay = - go-t2 + Vo t2

where
Ay = Yj - yo= 10,000 ft.

Hence 2go t - 2 Vo t + 2 Ay = 0;

Vo _+ 0 Vo2 - 2g Ay
t = At = ...

go

Considering only the value At > 0, we obtain

- 400 + V 4002 + 2 x 5.3 x 10,000 116.3
At -

5.3 5.3

= 21.95 sec.

The velocity attained is

V= -V Vo - 2go Ay = - 516.3 ft/sec.
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In the subsequent powered descent we obtain from the Graph E

based on Table XIII.

t = 81 sec. t + At Z 103 sec.

Kt = 0.0935 K = 12.1 x 10-4 s
see

Max. accel. = 0.24 ge

Both methods are compared in the following table:

Table XIV

Descent from yo = 20,000 ft., V= - 400 ft/sec.

I = 300 sec.
Constant Intermittent

Thrust Thrust

t Total 134 103 sec
time of
descent

AW
w = Kt 0.109 0.0935

S.112 .24

K 8.2 12.1 x 10- 4 1
sec

Hence the second method shows a not negligible fuel economy, with-

an acceleration well below the Earth's gravity.

fuel =109 - 93.5 _ = 15.1 p.c.
economy 109 109
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The similar computation applied to a powered descent from the

altitude 40,000 ft. yields:

At = 56.8 sec. V1 = 691.4 ft/sec.

Table XV

Descent from yo = 40,000 ft., Vo = - 400 ft/sec.

I = 300 sec.

Constant Intermittent
Thrust Thrust

t 168 56.8 + 50 = 106.8 sec.

AV
- = Kt .125 .096wo

"Y/ge .092 0.54

K 7.44 20.8 x 10-4 1
sec

In this case the economy of propellant is even better, being

.125 - .096 - .29 = 23.2 p.c.

.125 125

The max. acceleration is still only about half of the Earth's

gravity.

5.2 Modulated Thrust

In order to avoid the stalling of the engine and to obtain

some fuel economy in conditions similar to those with the

intermittent thrust, a modulated thrust can be used. Modulation
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is obtained by varying the flow of propellant. This involves

extra difficulties, as this flow should be continuously

modulated. Besides we assume a constant specific thrust which

is the measure of conversion of the thermal energy released in

a chemical reaction into the Kinetic energy of the mass flow.

This conversion is optimum for a certain value of the mass

flow corresponding to a given size and shape of the nozzle and

combustion chamber. The value of I may drop if these conditions

are not fulfilled, hence an adjustable nozzle will be

required. This entails extra complexity of design, which should

be rather avoided.

So we have either to assume that I = const., or provide

the diagram of its variation with the mass flow. In this

section we assume I = const = 300 sec., irrespectively of the
S

magnitude of W or of the size of the nozzle.

The variation of the thrust F is assumed to follow the law

F = F- = const; where W is the weight of the vehicle at a given
W Wo

time t. Since the gravity acceleration is assumed to be

constant, the decrease of the weight is due only to the propellant

flow. Wo is the weight of the vehicle at the beginning of the

maneuver, that is at y = Yo. Its value is the initial weight

of the vehicle measured on the lunar surface, (not on the Earth).

For a given altitude yo and vertiral velocity Vo we have to find

the time of descent tI ,the modulation of K = ; as a function
wo

of time and the ratio of the propellant consumed to the initial



TR 63-29 Pg. 55
Au t

weight of the vehicle: - = ti Kdt. We start with the equation
"Wo 

P0

of motion

W
F-y=F -W

or
y ( - g Fo- - o0 = const. (5-1)

Wo 0kO 0

The first and second integrations yield

= go E-0 11 t + = (o - I go t + Vo (5-2)

-o Yo

y = E- -1go t2 + V t + Y (5-3)

W 1 2 0 0

At the ground level we ought to have

y = O = 0 and obtain two equations with the

unknowns

tl and
Wo

From (5-2)
tj ~Votl = -

The (5-3) yields

F0  V2  2 ..-1

Vo 
Vo

2L- 1 go-1o go
hence F°= °2 +1.FV2

Wo 2 yo go Wo 2 Yo go
and tl=2•yO

tj=Vo
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Wo

W-- Wo- dt , K is variable in this case
io

F = Ii ge but W dW
go dt

so
F - - I g e d W

Fo ; divide both sides by W.go dt

F Fo ge dW 1
w WO go0 d- W

dW go 1 Fo- -- . dt
W ge I Wo

for any given time t which elapsed since the beginning of the

maneuver we have

tn Wo =go t F
- tW ge I ro

and go 1 F0

W = Wo e- ge I T o

The amount of the propellant consumed since t = 0 till t = t

is g0 Fo t
WF Wo - W ege Wo IWF- - I -

Wo Wo
and

go Fo t
I dW go Fo 1 - 'ro
WK 0 -÷ i e-l 01d ge

IV IV
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As an example we compute the descent from yo 40,000 ft,

Vo = - 400 ft/sec for I = 300 sec and compare the results with

those for constant and intermittent thrust.

2 yo 2 x 4 x 104
t1 = - = 200 sec.

Vo 4 x 102

Fo Vo2  4 x 4 x 10
-= +1=1+ =
Wo 2 yo go 2 x 4 x 104 x 5.3

4
-- + 1 = 1.377
10.6

The final value of the variable thrust

go Fo tl
F F1 W_ = F W F , W-'

Wo Wl wo wo wo Wo

-0 F- I = (0.164)(1.377)( 1 7.53 x lo- 4

ge Wo 1 300 sec

for tI 200 sec, we have

- 7.53 x 10-4 x 2 x 102 1.506 x 10-1

-0.1506
= e = 0.8602

Hence

-F1  (.377)(.8602) 1.184

Wo I



TR 63-2, Pg. 58

?ropellant consumed in the descent

WF 1 - e 0 1506 = 1 0.8602 = .1398; e-0.1506 = 1.1625

Wo

Acceleration is constant in this case: L = - 0.164 + I- =
geW g.e

= - 0.164 + 0.226 = 0.062.

TABLE XVI

K = 7.53 x 10-4 x e- 7 . 5 3 x 10-4 t

t 0 50 100 150 200 sec

7.53 t x 10- 4  0 0.03765 0.0753 0.1130 0.1506

e-7.53 x 10"4t 1 0.9630 .9275 .8932 .8602

K = - 7.53 7.25 6.99 6.73 6.48 x 10-4
Zo sec

The table provides the programming of the fuel flow during

the descent from y = 40,000 ft. It is valid only if the specific

thrust I = 300 sec. remains constant in spite of the varying

conditions in the nozzle and combustion chamber. If, however, I

is not constantl its variable values provided by the engine data

must be introduced in the expressions for thrust and rate of

propellant flow.

The results of the present investigation can be summarized

in the following table.
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Hence a modulated thrust did not produce an expected reduction

in propellant consumptiont because the lower rate of fuel flow

was offset by the length of the descent time. Besides)this case

would require a continually adjustable nozzle in order to maintain

a constant specific thrust. This would entail extra complexity

of the design and a decrease in reliability. So, at least for

the given initial conditions, the choice would be rather between

the cases A and B.


